
KinRes: Depth Sensor Noise Reduction 
in Contactless Respiratory Monitoring

Abstract 
This paper proposes a novel reliable solution, named 
KinRes, to extract contactless respiratory signal via an 
IR-3D Depth sensor (Microsoft Kinect 2) on human 
subjects interacting with a computer. The depth sensor 
is very sensitive to the minor changes so that the body 
movements impose noise in the depth values. Previous 
studies on contactless respiratory concentrated solely 
on the still laid subjects on a surface to minimize the 
possible artifacts. To overcome these limitations, we 
low-pass filter the extracted signal. Then, a greedy self-
correction algorithm is developed to correct the false 
detected peaks & troughs. The processed signal is 
validated with a simultaneous signal from a respiratory 
belt. This framework improved the accuracy of the 
signal by 24% for the subjects in a normal sitting 
position. 

Author Keywords 
Microsoft Kinect; Signal Processing; Greedy Algorithm 

ACM Classification Keywords 
I.4.3. Image Processing and Computer Vision: 
Enhancement 

Introduction 
The human respiratory signal is one of the biological 
features which is the interest of the researchers in 

Figure 1: KinRes screenshot with IR 3D Depth image from Microsoft 
Kinect 2 sensor (left) and the extracted respiratory signal (right). 
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many areas from medicine [8], rehabilitation [3; 7] and 
psychology [1] to the computer and cognitive science 
[2]. Respiratory monitoring devices usually require 
being attached to the human body in order to acquire 
the respiration signal, which limits its applications. To 
overcome this constraint, the contactless respiration 
monitoring has been suggested with versatile 
applications. In contactless respiration tracking, a 
depth sensor is commonly used [4]. Microsoft Kinect 2 
is one of the available devices, which is equipped with 
an IR 3D Depth sensor. As shown in Figure 2, it can 
measure the object’s depth accurately [5]. 
To extract the respiration signal from a depth sensor, 
we need to understand how the human respiratory 
system works. When a subject is inhaling, the rib cage 
moves upwards and outwards, and the air is drawn into 
the lungs. In this case, the chest is getting closer to the 
sensor, and when exhaling the reverse procedure 
occurs and the chest would go downwards and 
backward, and it is getting further from the sensor. 
Thus, the local minimum in the signal is the inspiration 
trough and the local maximum is the expiration peak in 
the respiratory signal from the depth sensor. 
Depth sensors are sensitive to the noises, which are 
generated by: 1) the subject’s movements (Figure 3); 
2) data acquisition in a high-frequency sampling rate; 
and 3) sensor limitations and errors (Figure 5.a). A 
high quality noise-free signal is essential to measure 
the respiratory characteristics. 
This paper proposes a novel real-time solution, called 
KinRes 1 (presented in Figure 1), to minimize the error 
and to maximize the accuracy of the respiratory signal 
extracted from Microsoft Kinect 2 on a normal sitting 
user interacting with a computer. To the best of our 
                                                 

1 KinRes source code is publicly available on  GitHub. 

knowledge, we are the first to study the subjects’ 
respiratory signal with normal body movements. 
KinRes employs signal filters and a smart self-
correction method. This system is developed by C#.NET 
in Microsoft Visual Studio 2015. 

Respiratory Signal Characteristics 
The respiratory signal in a time domain is the 
sequential values of the depth changes of the subject’s 
chest in millimeters. This signal has four main 
characteristics: 
1. Peak-to-Peak Amplitude is the depth difference of 

the two subsequent local maximum (peak) and local 
minimum (trough), which is in the unit of length. 

2. Inspiration (Inhale) Variability is the time difference 
between two subsequent inspiration troughs. 

3. Expiration (Exhale) Variability is the time difference 
between two subsequent expiration peaks. 

4. Breaths per Minute (BPM) is equal to the number of 
troughs or peaks in one minute. 

 
Methodology 
The chest region of interest (ROI) detection is the 
primary step in signal extraction. This is usually the 
only area which is being monitored in respiratory 
tracking systems [4; 9]. Figure 4 illustrates how KinRes 
operates and is explained as follows. 
 
Noise Filtering 
First, the raw signal extracted from the chest ROI is 
filtered to eliminate high-frequency noise and the 
native sensor errors by Simple Moving Average (SMA) 
and Kalman filters (Figure 5.b). After that, the user’s 
movement would be detected by assigning a moving 
threshold to differentiate the chest breathing 
movement from the body movements. The extracted 

 
Figure 2: Depth values of the 
objects within the distance of 
max 4 meters – Source: “Kinect 
Sensor: Microsoft Robotics, 2012” 

 
 
 

 
Figure 3: Moving backward and 
forward interference in 
respiration monitoring with 
incorrectly detected peaks and 
troughs 



 

sampling data are connected with a spline interpolation 
to generate a smoother signal. When the signal is 
filtered and interpolated, the peaks and troughs of the 
signal are calculated to measure the respiratory 
characteristics. 
 
Self-Correction: Greedy Algorithm 
Because of the possible remaining artifacts in the 
signal, all measured peaks, troughs, amplitudes, and 
variabilities may be affected. For this purpose, Peak-
Trough Variability (PTV) is proposed. PTV is the time 
difference between two sequential detected peak and 
trough. Based on the average of all normal PTVs, those 
out of a threshold band (e.g. 300ms) indicate the 
incorrectly calculated peak or trough. In the case of 
abnormal PTV, if the second derivative of the signal 
was negative, the higher value is accepted as the local 
maximum, otherwise, in the concave up signal, the 
lower value is the local minimum (Algorithm 1). 

Signal Validation & Results Analysis 
In order to evaluate the KinRes signal quality (Figure 
6), 24 signals from 12 male subjects (Mean age = 
27.58; SD = 2.84) were captured. The process has 
been performed simultaneously from KinRes (Kinect 2 
distance: 1 meter) and the Sleep Sense® respiratory 
belt in a 32 Hz sampling rate for a minimum length of 
one minute. Then, their correlations were computed. All 
the signals were acquired in a normal sitting position; 
however, each participant was recorded in two modes, 
one with no significant body movements, and the other 
mode with normal body movements while interacting 
with a PC. 
The best achieved correlation coefficient of KinRes with 
the Kalman filter on interacting/moving subjects was 
0.8637. In overall, the mean correlation coefficient 
value of 0.9094 of Kalman filter in both modes 
outperformed SMA (refer to Table 1). Utilized filters 
improved the accuracy of the system by more than 
24% in active mode, compared to the raw depth signal. 
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Figure 4: KinRes Methodology: Respiratory signal extraction from an IR Depth sensor (Microsoft Kinect 2) 

“Peaks and Troughs of the 
respiratory signal are the key 
elements of the signal 
characteristics. Peak-Trough 
Variability (PTV) is proposed 
as a new self-correction 
parameter to identify 
incorrectly measured peaks & 
troughs.” 

“KinRes can measure the 
respiratory characteristics 
precisely by employing a 
smart greedy algorithm for 
self-correction, and 
decreasing the signal 
artifacts, noise and errors.” 

PT ϵ [peaks/troughs collection] 
for every PTn in PT do 
  if PTV(PTn,TTn-1) <= 300 ms then 
      if f’’(PTn) < 0 then 
        Remove → min(PTn,PTn-1) ϵ PT 
      end if 
      if f’’(PTn) > 0 then 
      Remove → max(PTn,PTn-1) ϵ PT 
    end if 
  end if 
end for 

Algorithm 1: Abnormal 
Peak/Trough detection and 
correction (Self-Correction) 



 

Despite the higher average correlation of the Kalman 
filter, it takes few seconds for Kalman to adjust itself 
with the fluctuations ratio, and the correlation of the 
signal is lower than SMA at the beginning. However, 
unlike SMA, it does not require any predefined and 
fixed frame size. 
The result of this study is identical from many aspects 
in comparison to the prior works. These results are 
obtained from a normal sitting user behind a desk with 
normal movements; however, the best-reported results 
are on the subjects who were laid on a surface similar 
to the radiotherapy situations [4; 6; 9]. For instance, 
Xia et al. reported a mean correlation coefficient of 
0.969 in a fixed laid position with a translation surface 
placed on the chest to minimize the noise [9], while 
this is not a practical position in HCI and pervasive 
health applications. 

Conclusion 
This paper has proposed a real-time contactless 
respiratory tracker, KinRes, which is able to compute 
and analyze the respiratory characteristics precisely by 
employing a smart greedy algorithm for self-correction 
and decreasing the signal artifacts and errors. 
KinRes was tested on the subjects sitting behind a desk 
and interacting with a PC; however, the previous 
studies were done on subjects who were laying down 
with minimal movements (static). A commercial 
respiratory belt validated the recorded normalized 
signals from KinRes, and the correlation results were 
identically high. 
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Figure 5: Captured noise from a 
static object within 60 seconds in 
the distance of 2 meters from 
Kinect 2 – a) Raw signal without 
filtering; b) Filtered signal. 
 

 
Figure 6: Respiratory signal after 
noise reduction with correctly 
detected peaks/troughs 

 
 Static Active 

NO-FILTER 0.8724 0.6195 

SMA 0.9565 0.8411 

KALMAN 0.9551 0.8637 

Table 1: Correlation Coefficient 
results of two modes of signals 
(static/still; active/normal) from 
KinRes against respiratory belt 


