Expert Systems With Applications 214 (2023) 119160

Contents lists available at ScienceDirect Eipert

Systems
. . . XI lications &
Expert Systems With Applications s |

Eebtorin-Chiel
Binshon

journal homepage: www.elsevier.com/locate/eswa

Check for

A reinforcement learning model for the reliability of blockchain oracles | opnes’
Mona Taghavi ®*, Jamal Bentahar »°, Hadi Otrok ™, Kaveh Bakhtiyari ¢

a Concordia Institute for Information System Engineering, Concordia University, Montreal, Canada
b Department of EECS, Khalifa University, Abu Dhabi, United Arab Emirates

¢ Interactive Systems, Duisburg-Essen University, Duisburg, Germany

d Department of Electrical Engineering, The National University of Malaysia, Bangi, Malaysia

ARTICLE INFO ABSTRACT
Keywords: Smart contracts struggle with the major limitation of operating on data that is solely residing on the blockchain
Smart contract

network. The need of recruiting third parties, known as oracles, to assist smart contracts has been recognized
with the emergence of blockchain technology. Oracles could be deviant and commit ill-intentioned behaviors,
or be selfish and hide their actual available resources to gain optimal profit. Current research proposals employ
oracles as trusted entities with no robust assessment mechanism, which entails a risk of turning them into
centralized points of failure. The need for an effective method to select the most economical and rewarding
oracles that are self-interested and act independently is somehow neglected. Thus, this paper proposes a
Bayesian Bandit Learning Oracles Reliability (BLOR) mechanism to identify trustless and cost-efficient oracles.
Within BLOR, we learn the behavior of oracles by formulating a Bayesian cost-dependent reputation model and
utilize reinforcement learning (knowledge gradient algorithm) to guide the learning process. BLOR enables all
the blockchain validators to verify the obtained results while running the algorithm at the same time by dealing
with the randomness issue within the limited blockchain structure. We implement and experiment with BLOR
using Python and the Solidity language on Ethereum. BLOR is benchmarked against several models where it
proved to be highly efficient in selecting the most reliable and economical oracles with a fair balance.

Blockchain oracle
Multi-armed bandit
Reinforcement learning
Reputation model

1. Introduction In blockchain, the term oracle refers to an entity that can access
external data without compromising the integrity of the blockchain.
Oracles are assumed to be third-party agents that are trustworthy and
can communicate with the outside world, and fetch the data into
the blockchain Xu et al. (2016). Oracles are also able to connect
the blockchain to external databases. This way, costly computations
can be carried out outside of the blockchain. Oracles ensure the in-
tegrity of the retrieved data by providing some evidences (Kochovski,

Gec, Stankovski, Bajec, & Drobintsev, 2019). Thus, cryptographic-based

Blockchain technology has the ability to cut the role of middlemen
by enabling self-enforcing digital contracts (called smart contracts),
whose execution does not require any human involvement in a safe,
secure, and immutable way. The emergence of the blockchain as a
revolutionary technology has been compared to the Internet, and it has
predicted that it will erode power from centralized authorities. With
its deployment as a service (Lu, Xu, Liu, Weber, Zhu, & Zhang, 2019)
and its integration with IoT (Baygin, Yaman, Baygin, & Karakose, 2022;

Ho, Tang, Tsang, Tang, & Chau, 2021), blockchain has a promising ap-
proach in supporting business collaborations by ensuring transparency
to all the stakeholders if conflicts arise (Hull et al., 2016). However,
the integration of blockchain with external data is one of the major
obstacles preventing widespread adoption. Imagine that two persons
place a bet on who wins a football match and deposit their funds in
a smart contract. Based on the results of the game, the smart contract
should release the funds to the winner. However, a smart contract does
not have access to the data out of its network and should ask a trusted
party to learn who won the match.

* Corresponding author.

evidences such as the ones used by Oraclize,! or trusted hardware-
based evidences such as the ones used by the Town Crier system that
leverages Intel SGX (Zhang, Cecchetti, Croman, Juels, & Shi, 2016) are
used as part of a number of oracle-based systems. These evidences are
not only insufficient to ensure that the data is tamper-proof, they are
impractical in many real-world applications where the digital data is
not available or human involvement is required.

Oracles could display ill-intentioned behaviors, or unable to perform
their tasks due to lack of capacity and being selfish by failing to

E-mail addresses: m_tag@encs.concordia.ca (M. Taghavi), bentahar@ciise.concordia.ca (J. Bentahar), hadi.otrok@ku.ac.ae (H. Otrok),

academic@bakhtiyari.com (K. Bakhtiyari).
1 https://provable.xyz/

https://doi.org/10.1016/j.eswa.2022.119160

Received 9 February 2022; Received in revised form 25 October 2022; Accepted 25 October 2022

Available online 29 October 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:m_tag@encs.concordia.ca
mailto:bentahar@ciise.concordia.ca
mailto:hadi.otrok@ku.ac.ae
mailto:academic@bakhtiyari.com
https://provable.xyz/
https://doi.org/10.1016/j.eswa.2022.119160
https://doi.org/10.1016/j.eswa.2022.119160
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.119160&domain=pdf

M. Taghavi et al.

report their real available resources (Lo, Xu, Staples, & Yao, 2020).
Thus, placing a reliable mechanism to select the right oracles plays
a significant role in a blockchain network’s success. There are sev-
eral proposals for organizing one or more oracles as a group with
trustworthy mechanisms, specifically designed for computer hardware
and software (Berryhill & Veneris, 2019; Goel, van Schreven, Filos-
Ratsikas, & Faltings, 2020). However, these methods are not applicable
when human intervention is involved or when the original data source
is malicious. Moreover, these proposals sought to organize one or
more oracles with enhanced security features or incentive mecha-
nisms (Khosravifar, Bentahar, Moazin, & Thiran, 2010). To the best
of our knowledge, there is no smart mechanism to promote how to
select the most rewarding oracles among the existing ones in a market
of oracles that might act selfishly to gain optimal profit.

In this paper, we utilize a Bayesian multi-armed bandit to learn the
most rewarding oracles from the two perspectives of reliability and
cost efficiency, to perform specific tasks within a blockchain. Multi-
armed bandit is a reinforcement learning method that assumes the
player does not know how much it will earn each time playing a
particular slot machine, but the player has a distribution of belief,
which could be wrong. The only way the player learns who has the
highest expected reward is to try all machines, even those that do not
appear to be the best. While trying these machines, the player may be
earning lower rewards. The ultimate goal is to balance what we earn
against what we learn (to improve future decisions) to maximize the
expected sum of rewards. In our case, oracles are considered to be slot
machines and blockchain beneficiaries are players who try to recruit
the best oracles. Reinforcement learning methods have been applied
in many real-world applications (Alagha, Singh, Mizouni, Bentahar,
& Otrok, 2022; Rjoub, Bentahar, Wahab, & Bataineh, 2021; Rjoub,
Wahab, Bentahar, Cohen & Bataineh, 2022; Sami, Bentahar, Mourad,
Otrok, & Damiani, 2022; Sami, Mourad, Otrok, & Bentahar, 2021;
Sami, Otrok, Bentahar, & Mourad, 2021) and their employment within
blockchain has great advantages including high accuracy, ability to
learn with few or no historical record, and low computational resources
consumption (Sutton & Barto, 2018). To the best of our knowledge,
these methods have not been applied in the field of blockchain yet, and
even though it would be very interesting and novel, serious challenges
in design and implementation within current platforms arise.

Theoretical and practical challenges: The issue of selecting the
most rewarding oracle is a decision-making problem that should cap-
ture the tensity between exploration of new oracles and exploitation of
the good and well-known ones. For simple and low number of choices,
dynamic programming can compute the optimal solution. However,
it is very computationally inefficient in the blockchain environment
with the growing number of oracles working for blockchains. There
is a need for an algorithm that runs quickly with a very minimal
computation surcharge. The reason is that this algorithm has to be
running by all blockchain validators (i.e., miners) acting within the
network. Furthermore, current solutions of multi-armed bandit assume
that the player retains little information about the past, or switch
between exploration and exploitation either randomly or after a fixed
number of trials. These solutions are not practical for our problem,
since oracles could be run and managed by intelligent agents that can
change their behavior anytime. Another challenge of utilizing current
solutions is that our decision-making procedure should be based not
only on the oracles’ performance, but also on their cost of performing
the task considering applications’ limited budgets. There could be some
reliable and high performance oracles that are expensive, but current
solutions would always select them based on their past performance
records. We assume a fixed cost for each oracle, and consider the
oracles reputation and cost of other oracles in the market could change
the behavior of each individual oracle.

To overcome the aforementioned challenges, we formulate a
Bayesian cost-dependent reputation model to learn the behavior of
oracles and utilize knowledge gradient algorithm which guides the

Expert Systems With Applications 214 (2023) 119160

learning process based on the marginal value of information. Using a
Bayesian model for blockchain is complex, since the algorithm has to
produce the same results in every course of experiment. This is because
all the validators should verify the results and it only happens if all of
them come up with the same results while running the algorithm. This
adds further complexity since all the Bayesian reinforcement learning
methods include randomness and use random variables. At last, the
current platforms of blockchains and smart contracts are very limited,
for example no floating number can be defined within blockchain,
or limited number of variables can be defined for Ethereum. This
paper discusses how the proposed model and mechanism tackles and
solves these issues by formalizing the oracles’ performance optimiza-
tion as a Bayesian bandit problem. Our algorithmic model defines a
distribution over oracles with different reputations (representing their
reliability and costs) to be used by blockchain participants to choose
best performing oracles on future requests.
Contributions: This paper contributes as follows:

1. Formulating a new model using a Bayesian cost-dependent rep-
utation model (BCRM) and knowledge gradient (KG) to find
the most rewarding oracles. BCRM captures the behavior of the
oracles elegantly, and KG unfolds the exploration/ exploitation
dilemma in multi-armed bandit with very low computational
cost and high accuracy.

2. Proposing a framework to show how to employ the model within
a blockchain where all the validators need to achieve a con-
sensus. This framework incentivizes oracles to continuously act
honestly and provide a fair balance of quality and price with
minimal possibility of acting maliciously.

3. Adapting a reinforcement learning algorithm for blockchain en-
vironment with limited computational resources and capabilities
(e.g., there is no floating number in Ethereum). Designing and
implementing a reinforcement learning solution for the oracle
selection problem is an objective yet to be achieved.

We simulated and implemented our proposed model using Python
on Google Colab and Solidity on Ethereum. The implementation of
BLOR deals with many challenges raised by the complexity of machine
learning and limitations of blockchain and Ethereum, such as floating
numbers, randomness and advanced mathematical numbers that are
not supported in blockchain. Since there is no real-world data on
oracles working for blockchains, we had to simulate the behavior of
100 oracles during 1000 observations to assess the performance of our
model and compare it with other comparative algorithms.

The reminder of this paper contains the following sections: Section 2
explains the trust paradox of oracles and blockchains to motivate the
problem statement. Section 3 discusses the related work. Section 4
presents BLOR as our proposed model and framework and provides an
illustrative example to show how the model works. Section 5 provides
a case study in which BLOR is applied. Experimental details and results
are covered in Section 6. Lastly, the conclusion is drawn in Section 7.

2. Motivational scenario: Trust paradox of oracles and blockchains

Many blockchain platforms have been experiencing the oracle idea
since the beginning of Ethereum, but the oracle dilemma continues
unsolved at a large scale. The most challenging part is that majority
of oracles require a level of trust, which directly opposes the trustless
blockchains’ nature. The main complication of using oracles is trusting
them as outside sources of information. The trust issue connected with
oracles is referred to as the oracle problem.

Fig. 1 presents the motivating scenario of this paper. Let us assume a
smart contract running an insurance marketplace platform in a trustless
environment. Imagine that an insured costumer has a car crash and
makes a claim to its insurance company. According to the agreed
policies signed in the smart contract, the insurance company requires
the crash sensors’ data and some evidences to process the claim, but

M. Taghavi et al.

Oracle 1 Oracle 2 Oracle 3 Oracle k
History: good History: new History: bad History: volatile
Cost: expensive ~ Cost: normal Cost: cheap Cost: normal

?

Is the obtained
result reliable?

Which oracle to
be assigned?

SMART
CONTRACT

8 -
Customer (Service requester) Insurance company (Service provider)

Fig. 1. Motivational scenario.

the blockchain network cannot provide such data. To transmit the
data and estimate the situation, the smart contract needs to employ an
oracle. Since the oracle determines what the smart contract sees, it is
crucial to employ not only an economical oracle, but also a reliable and
trustworthy one. If the oracle is malicious, it may report in favor of the
insurance company and the smart contract accepts the result blindly.
Besides, the smart contract cannot rely solely on the historic behavior
and reliability of the oracle, since it might decide to deviate for any
reason. Furthermore, usually the allocated budget for these tasks are
limited. It gets more complicated when some oracles are new with little
or no history offering low prices. The smart contract has to find an
optimal choice with a balance between reliability and price that all the
blockchain validators agree on the obtained result.

Oracles, like human subjects and computer applications, are sus-
ceptible to bad behavior that can manifest in gamified attacks in
blockchains. In its most basic form, a centralized oracle can supply
misleading data, which can impact the actions of blockchain nodes in
ways that make them susceptible to attacks. In some situations, the
incentives to submit non-truthful data may surpass the gains of acting
truthfully. It is argued that a high decentralization of the oracle model
would lead to less vulnerability to the “Oracle Paradox” (Ellis, Juels, &
Nazarov, 2017). No matter how centrally centralized it is, an oracle
will always come with a price. The most profitable strategy should
be always acting honestly, which is why strong incentives must be
placed. This raises the need to investigate an incentive mechanism that
can motivate oracles to behave honestly. In this paper, we argue that
assigning a reputation value to these oracles and make them subject to
tests against other oracles make the option of reporting misleading data
not profitable.

3. Background and related work

The literature review is summarized from three different areas:
blockchain, multi-armed bandit, and crowdsensing. As the blockchain
oracle selection is somehow neglected in the literature, we were not
able to find a proper related work and compare different methods
of a third-party selection in a blockchain environment. Therefore, the
most similar approach, that is “worker selection in a blockchain-based
crowdsensing” is reviewed in this section.

Expert Systems With Applications 214 (2023) 119160

3.1. Background on blockchain

Blockchain is a distributed database system built upon a times-
tamped list of transaction records. Its main innovation lies in allow-
ing parties to transact with untrusted parties using a computer net-
work (Mendling et al., 2018). The blockchain data structure is a hi-
erarchy of blocks that aggregates transactions. Each block is uniquely
identifiable and linked to its predecessor in the chain, and integrity is
ensured using cryptography-based techniques.

Nodes in a blockchain network might perform arbitrary or malicious
behaviors, or possessing misinformation. So, consensus mechanisms are
the core of blockchain networks to ensure that all participants agree
on the state of the network in such trustless environments (Bouraga,
2021). The most important consensus algorithms for blockchains are
Proof of Work (PoW) and Proof of Stake (PoS). In blockchains us-
ing PoW (e.g. Bitcoin), the algorithm rewards participants for solving
cryptography-based puzzles to validate transactions and build new
blocks. In PoS-based blockchains (e.g. Ethereum’s upcoming Casper
implementation), validators take turns to propose and vote for the next
block. The weight of validators vote depends on their stake or deposit
on the network. PoS provides enhanced scalability, fast transactions,
low computation and energy consumption, and high security.

Blockchain was originally designed to operate as a trustless peer-to-
peer network for financial transactions. Since then, the technology has
grown to include many other applications including smart contracts.
A smart contract lives on the blockchain and has its own unique
address. Moreover, smart contract technology allows users to create
autonomous applications that operate independently without any in-
tervention from a system entity. While BLOR can theoretically support
any smart contract with low computation surcharge, this paper fo-
cuses on its use in Ethereum for implementation due to its publicly
accessible platforms. Ethereum initially developed its platform based
on PoW, but recently is performing a significant upgrade to presents
Ethereum 2.0, using the Casper protocol (Buterin & Griffith, 2017).
The Casper protocol eases the transition from the current PoW to a
pure PoS protocol. Ethereum’s cryptocurrency is called Ether. In the
current version, Ethereum functions through gas which is an Ether-
based purchase of the consumed resources. This will help Ethereum
prevent DoS attacks, infinite loops within contracts, and in general
control network resource expenditure. Every function, such as sending
and retrieving data, executing computation, and storing data, has a gas
cost.

Smart contracts have two types: deterministic and non-deterministic
(Morabito, 2017). The deterministic smart contract code is imple-
mented on a blockchain with complete isolation of external environ-
ments, and the decisions and the contract states are maintained by
participants within the blockchain. By contrast, the nondeterministic
smart contract code needs external information to make decisions,
making it dependent on actors outside the blockchain network. For
example, the external actor could be a weather information provider
or a sensor data provider, who are known as oracles in blockchain.

Blockchains have revolutionized corporate governance since they
allow higher transparency among all participants and easy admin-
istration, along with the provision of innovative infrastructures for
sharing business transactions in real-time. Although blockchain has
a great potential to help businesses share data and collaborate in a
secure way, very little research has been done on real-world appli-
cations (Yermack, 2017). Tractica, a market research firm, estimates
that enterprise applications of blockchain will reach $19.9 billion in
revenue by 2025 (Jiao, Wang, Niyato, & Xiong, 2017). Most of research
about blockchain’s application have centered on economics (Under-
wood, 2016), energy (Miinsing, Mather, & Moura, 2017) and IoT
applications (Zhang & Wen, 2017).

M. Taghavi et al.
3.2. Background on multi-armed bandit

Reinforcement learning is one of the most popular machine learning
techniques that is inspired by behavioral psychology of a biological
agent. The idea is that an intelligent agent learns the outcome of
its actions by interacting with the environment in which it optimizes
its actions based on the accumulated rewards it receives (Liu, Zhu,
Jiang, Ye, & Zhao, 2022). Multi-armed bandit is a classic reinforcement
learning problem. Its name comes from slot machines in casinos, where
a gambler is in front of a row of slot machines and he should decide
which machine, how many times, and in which order to play the slot
machines in order to maximize his potential prize. In this context,
each machine gives a stochastic reward from a probability distribution.
The gambler’s objective is to maximize the total of rewards earned by
pulling the sequence of levers at slot machines. Multi-armed bandit
problem is exploited in many fields such as medical (Villar, Bowden,
& Wason, 2015), recommender systems (Li, 2010), and crowdsourc-
ing (Jain, Narayanaswamy, & Narahari, 2014). But, its application in
blockchain along with its specific challenges has not been explored in
any research yet to the best of our knowledge.

Only a few initiatives utilizing reinforcement learning for blockchain
and smart contracts have been undertaken in academia. Among them,
one focused its attention on energy-efficient resource management
problem in cloud data centers and developed a robust blockchain-
based resource management framework to boost energy efficiency (Xu,
Wang, & Guo, 2017). This research uses a reinforcement learning model
embedded in a smart contract to mitigate the cost of energy production.
The authors demonstrated their method based on Google cluster tracing
and electricity prices, which allowed them to cut the data centers’ cost
greatly.

Multi-armed bandit is very accurate with minimal complexity and
required computing resources comparing to other reinforcement learn-
ing methods. These specifications made it a very optimal solution
to be employed on blockchain and smart contract platforms where
computation and storage are very precious.

3.3. Related work: Blockchain oracles

The way an oracle retrieves its data depends on whether it relies
on human involvement or functions completely automated. Automated
oracles operates solely through software and hardware by accessing
a data source and retrieving the required data. This means that the
oracle itself is fetching the data and is not the original source of the
data. Automated oracles only provide deterministic inquiry results as
they retrieve existing information from a data source. However, this
is not the case with autonomous oracles or oracles involving human
intervention. These oracles are not only able to transmit deterministic
data, but also to respond to arbitrary inquiries which could be hard to
be deducted by machine.

Oracle systems can be centralized or decentralized. Oraclize (now is
called Provable)? is a centralized oracle service based on Amazon Web
Service that provides data feedback for smart contracts and blockchain
applications. The main attention of Oraclize is given on proving that
the obtained data from its original source is genuine and untampered.
Town Crier (Zhang et al., 2016) is also a centralized authenticated data
feed that operates as a trusted bridge between existing HTTPS-enabled
websites and Ethereum. In fact, it uses trusted hardware and software
to be able to prove that the tasks are performed with no tamper and
results are reliable. However, similar to any other centralized solution,
its validity relies on a central authority and there is no guarantee if
the task is performed correctly. It also pays attention to bring data to
smart contracts in a trustworthy way, but the data resource is ques-
tioned. Chainlink (Ellis et al., 2017) is a decentralized oracle network

2 https://provable.xyz/

Expert Systems With Applications 214 (2023) 119160

on the Ethereum platform. It originally aims to provide tamper-proof
data for smart contracts through accessing key data resources using
designated APIs. Chainlink operates through incentives and aggregation
models, however, it has cost and scalability issues. In another attempt,
the authors in Ma, Kaneko, Sharma, and Sakurai (2019) proposed a
decentralized oracle system equipped with verification and disputation
mechanisms. ASTRAEA (Berryhill & Veneris, 2019), is an interesting
decentralized oracle working based on a voting game to decide about
the truthfulness of propositions. All voters place some amount of stake
to have the opportunity to vote on a selected randomly proposition.
The authors analyzed the game-theoretical incentive structure to prove
the existence of Nash equilibrium under the assumption of honesty.

In a nutshell, the literature on blockchain oracles is limited to only
automated oracle solutions and the trust issues surrounding the trans-
mission of information to smart contracts and neglects the trust and
quality issues concerning the data source itself. Autonomous oracles
and human intervention-based oracles cannot be distinctly separated
from the data source, and to the best of our knowledge, there is no
proposal addressing the issue of trustworthiness for these types of
oracles that is being investigated by this paper. Besides, optimization
of the cost of individual oracles, which is one of our objectives in this
paper, has not been tackled in the literature at the time of writing this
article.

3.4. Related work: Worker selection in a blockchain-based crowdsensing

Worker selection is the crucial component for crowdsensing to
control the quality of sensing services. The literature concentrates on
selecting highly reliable workers to maximize the sensing data quality
in two methods centralized and decentralized. SenseChain (Kadadha,
Otrok, Mizouni, Singh, & Ouali, 2020) is a decentralized crowdsens-
ing framework for multiple requesters with multiple workers that is
deployed on Ethereum. In SenseChain, the quality information of the
tasks is evaluated by integrating three independent metrics of repu-
tation value, time, and distance. Chatzopoulos et al. concentrated on
the influence of the opinions of different requesters on worker selec-
tion (Chatzopoulos, Ahmadi, Kosta, & Hui, 2017). A beta distribution
is used to assess the probability distribution over the ability of workers
to return results in time. Furthermore, it allows different requesters to
exchange their opinions about the workers to improve their knowledge
about workers as much as possible to make the most appropriate
selection, and then update the reputation of workers based on the task
completion results.

Zhao et al. developed a blockchain-based mobile crowdsensing sys-
tem and then presented a privacy-preserving reputation management
scheme in order to defend against malicious workers (Zhao, Tang, Zhao,
& Wu, 2019). It can ensure data privacy during reputation computation
based on additive secret sharing. A blockchain-based crowdsourcing
platform with a robust reputation management scheme is proposed
in Bhatia, Gupta, Dubey, and Kumaraguru (2020). To have a reliable
worker selection by the task requester, the worker reputation values
are calculated based on the task data evaluation results from other
equivalent participants on the platform. It placed an attractive incen-
tive mechanism to encourage workers who are required to have the
corresponding computing skills and conditions to actively participate
in the task evaluation.

Ding et al. paid major attention to improving the sensing services
quality and ensuring the fairness of task data evaluation (Ding, Chen,
Lin, & Tang, 2019). They proposed a reputation mechanism and an ar-
bitration mechanism for worker selection and data evaluator selection
respectively. Chatzopoulos et al. identified Internet service providers
to complete location-based task recommendation (Chatzopoulos, Gujar,
Faltings, & Hui, 2018). It designed a cost-optimal auction to select
workers, thereby minimizing the cost of crowdsensing providers. Trust-
Worker (Gao, Chen, Zhu, Dong, & Ma, 2021) is another attempt to
form a trustworthy and privacy-preserving worker selection scheme

https://provable.xyz/

M. Taghavi et al.

for blockchain-based crowdsensing. TrustWorker dynamically updates
workers’ reputations by evaluating data quality and adopts these values
to evaluate the reliability of workers.

In the domain of mobile edge computing, Xu et al. proposed a
trustless crowd-intelligence ecosystem based on the common decen-
tralization feature of mobile edge computing and blockchain technol-
ogy (Xu, Wang, Bhargava, & Yang, 2019). It uses a reward penalty
model to align the incentives of stakeholders and the predefined rules
through smart contracts running on many edge servers of the mobile
edge computing network. Machine learning was practiced off-chain to
improve the performance of mobile offloading in Xiao et al. (2020).
The authors proposed a blockchain-based mobile edge computing trust
mechanism to improve the computational performance of the mobile
devices and suppress the attack motivation of selfish edge devices. A
reputation assignment method is developed to choose the miner and a
reinforcement learning approach is utilized to develop an algorithm for
edge CPU allocation to optimize the number of CPUs for the offloading
task.

To summarize, throughout the literature on worker selection in
crowdsensing, cost and reputation management have been fully ad-
dressed as workers are mainly known as autonomous or human agents.
However, to the best of our knowledge, it has not considered on-chain
machine learning algorithms to optimize the selection of the workers
considering the factors of trust, quality, and cost. This paper, which
is inspired by the reputation management methods presented in this
section, is going to address these issues using reinforcement learning.

4. BLOR: A Markovian multi-armed bandit-based solution

The main concern of a blockchain-based system, which requires ob-
taining data from the outside world, is how to maximize total rewards
from various oracles in an uncertain setting through trial and observa-
tion. BLOR provides an optimal solution using Bayesian theorem and
reinforcement learning techniques. In the process of BLOR’s sequential
decision to choose a proper, reliable, and cost-efficient oracle, two
components have to be considered:

1. Learning: BLOR utilizes observations to update its understanding
and knowledge regarding the reliability of oracles.

2. Choice: BLOR selects an action that has a proper balance be-
tween the immediate reward of oracles (short-term objective)
and the increased knowledge of oracles (long-term objective).

For the learning component, BLOR uses a novel Bayesian cost-dependent
reputation model (BCRM), and for the control component it uses
Knowledge Gradient (KG) (Frazier, Powell, & Dayanik, 2009). BLOR
is responsible to manage trust establishment among the blockchain
participants and oracles by assigning tasks to the best performing
oracles. A digitally assigned reputation value is an effective factor
that can be used by BLOR to recognize the premier oracles. To assess
and model reputation, we require information and evidence about the
history of the evaluated oracle. However, solely employing oracles
with good history implies loosing significant opportunities of stranger
oracles that BLOR has never encountered before. Furthermore, these
oracles tend to be more costly, which can lead to an exceeding budget.
Thus, it is crucial to combine the cost factor with the reputation value
while assigning a task to an oracle. BCRM assumes that reward rates can
change during the experiment depending on the reputation state of the
oracle. There are just two possible actions for the choice component: 0
(freeze) which produces no reward nor state change, and 1 (continue)
with reward 6, and reputation state changes, according to Markov
dynamics.

KG prefers the actions that inspects the choices with little informa-
tion. Exploration is an endeavor to gain knowledge with a minimal
use of precious time and computing resources. Pure exploration can
waste time and computing resources if it searches irrelevant areas of the
environment. This also means that the agent’s learning efficiency may

Expert Systems With Applications 214 (2023) 119160

be poor, since it is wasting time on actions that do not contribute to
its goals. Finding a good balance between exploration and exploitation
is highly beneficial. The agent may be able to discover the most
worthy areas to explore by exploiting its current knowledge of the
environment. Furthermore, optimizing the cost of learning (i.e., making
the agent’s performance during learning as high as possible) cannot be
achieved without some level of exploration of the environment, which
is important in identifying efficient behaviors.

4.1. BLOR framework

Fig. 2 illustrates the workflow of BLOR that aims to select the most
optimal oracles in terms of reliability and cost. Majority of this process
happens on-chain so that the blockchain’s validators can verify and
achieve a consensus to avoid any bias. Let us consider the insurance
company as a service provider and the customer as a service requester,
trading through a smart contract. When a claim request is triggered
by the service requester through the smart contract, BLOR will decide
which oracles will perform the task. At first, once the smart contract
receives the request, it automatically creates a new contract with the
network of oracles who are the other beneficiary party. This contract
contains a new set of rules and conditions such as the payments and
compensations policies.

In order to understand the oracles behavior and learn their rewards
(in terms of reliability and cost), BLOR creates a BCRM. However, since
BCRM is a Bayesian model and probability is involved, we need to
generate a random number from the prior distribution in each trial.
Generating a random number by each node of the blockchain is a
challenge as each node could come up with a different number, around
which making a consensus is impossible. Therefore, we propose a Ran-
dom Number Generator (RNG) with participation of all the validators’
nodes. Thus, in step 2, a RNG contract will be created to issue an
agreeable random number which will be elaborated in Section 4.3. To
select the most rewarding oracle, the KG algorithm is used thanks to its
high performance and fast computation that makes it suitable for the
blockchain environment. In step 3, KG uses the generated reputation
state of each oracle to calculate its degree (D).

The KG algorithm selects the most rewarding oracles over a period
of time, so at each request, there could be some chosen oracles with
unknown or low rewards. For this reason, the chosen oracle has to
be checked if additional oracles have to be hired. Depending on the
strategies and objectives of the blockchain and its validators, as well
as the sensitivity of the task being outsourced to the oracle, the smart
contract has to decide if the probability of truthfully and successfully
performing the task is high enough for the chosen oracle in step 4.
If this probability is low, the next two oracles with highest degree of
knowledge (obtained from KG) shall be selected to ensure a reliable
result (step 5: No). The intuition behind selecting three in total is
to evaluate the trustworthiness of the results based on the majority
vote and then rate each oracle accordingly. However, more than three
oracles is not economically justified since each of them charges the
smart contract to perform its task. If only one oracle is chosen, we can
have some random tests by using other oracles from time to time to
use for training our model (step 5: Yes). These random tests ensure
that even trusted oracles do not behave maliciously and the learning is
processed without deviation. The nominated oracles will be called by
smart contract triggers within step 6 and the results will be reported
by sending a signed transaction to BLOR in step 7. BLOR verifies the
results, updates the reputation values of the participated oracles, then
pays these oracles according to the defined rules and conditions in step
8, and informs the requester about the result (step 9). In the last step
(10), the updated posterior reputation including the success or failure
of the oracle will be sent to BCRM.

M. Taghavi et al.

Expert Systems With Applications 214 (2023) 119160

SMART
CONTRACT
Service provider Service requester
48— — &
(9) Announce 4 (1) Create a
verification results new contract
Oracles community (10) Send updated v
reputation (2) Final Random 2
4 <
(7) Report posterior BCRM Random RNG contract 4numbers (s) T .
Or the results number

» Compute the final
< result & reputation
(8) Make the
payment

Ok

(6) Call the nominated
oracle/s to assign the task (5) Yes
Random

test

High probability
of success

L(S) Output: Reputation state

KG Algorithm

i
Sock | @
verification
=10

(4) Output: The selected oracle with
highest D

(5) No @ .
Pool of validators ir
PoS

v
Select another two
oracles with highest D

Fig. 2. BLOR framework.

4.2. Formulating oracles problem in a bandit setting

Suppose on each data request, we have K oracles known with
reward rates, 0, k = 1,..., K. At first, we assume 6, to be the true
reward mean if oracle k is to be chosen. We do not know 6,, but we
assume that it is normally distributed with prior mean 02, variance (02)2
and precision ﬂ]? =1 /(6,‘3)2. Let R" = (4}, §;) be the vector of reputation
states with the means and precisions for all the choices of oracles after
t trials.

Let k' be the oracle that we choose after ¢ trials, meaning that our
first choice is k* made based on the prior, purely. These trials are
made based on a policy = to be run by smart contract which depends
on the history of trials. Policy is a decision rule that BLOR adopts on
behalf of all the blockchain participant to assign tasks to oracles. Let us
assume that K7 is the random variable representing the total number
of selecting oracle k, given the policy z. This number is random since
the results depend on the observed rewards. Our objective is to choose
a policy r that solves the following supremum objective function supV’
where R, is the reputation state of the oracle k:

K
supV’”* =E” Z K R0y
k=1

(€8]

E” stands for the expected value depending on r to reflect the underly-
ing probability space that we are going to construct. Learning problems
can be easily formulated in a Bayesian framework, where we are able
to capture the uncertainty in our belief about a system. In our oracle
bandit problem, 6, is the true rewards value of oracle k, but we do not
know this value. Instead, we assign a probability distribution from the
Beta distribution that describes what we think 6, is for each oracle.
Since each oracle can have two outcomes of success or failure, we
employ the Beta distribution where trials are generated independently
and identically from an unknown Bernoulli distribution for each oracle.
The following section explains how we construct our Bayesian model
for oracles.

4.3. Bayesian cost-dependent reputation model
We formulate two components of Bayesian learning as follow: (1)

Bayesian Inference: to update the reputation representing the belief
about the probability of a successful and truthful evaluation (reward)

(07
O10

@t»l @t

(A) (B)

Fig. 3. Graphical model of (A) Fixed model vs. (B) Dynamic model. The circled
numbers present example variables’ values. S denotes the oracle success and F denotes
the oracle failure to deliver reliable results with a fixed probability of y or dynamic
probability of y'.

based on new information; and (2) Bayesian Learning: to compute the
posterior probability distribution of the target features.

Usually bandit solutions using Bayesian learning assume that there
is a fixed probability of y € [0, 1] for the experiment repeated on any
given trial 7. Then, the appropriate value of y shall be learned over the
time period of experiment. This approach is naive to solve the problem
of oracles, since oracles might change their behavior and deviate in
a certain point of time for certain cases. For this reason, we adopt
a dynamic model for reputation state in which y’ has a Markovian
dependency on y'~!. A graphical illustration of these two models is
presented in Fig. 3.

Under the dynamic reputation model, the reward probabilities
might change at times during the experimental session, as each oracle
is an autonomous agent in our problem and might change its behavior.
Thus, during any trial, the prior reputation of each oracle combines a
generic prior and the posterior reputation from the previous trial. The
main purpose of BLOR is to monitor the reward probability of each
oracle during the trial period. The prior distributions that produce the
Bernoulli rates are assumed to be Beta distributions, Beta (a, b), whose
two hyper-parameters, a and b, identify the pseudo-counts referred
to by the prior. The beta distribution we use in our model requires
a pseudo-random number to operate on different cycles. Smart con-
tracts and blockchains cannot generate a pseudo-random number, so it

M. Taghavi et al.

should be resolved by either developing a deterministic pseudo-random
number generator or using a trusted oracle.

4.3.1. Random number generator

Let n be the number of validators. In BLOR, the random number
is generated by all the » validators to enable the final verification of
results. First, we need to create a Random Number Generator (RNG)
contract in BLOR, which defines the participation rules and computes
the final random number. The basic process of generating a random
number can be divided into two phases:

1. Any validator who wants to participate in the random number
generation and the final candidate verification needs to send a
secret number (s; € Beta(a,b),1 < i < n) encrypted by Keccak-
256 hash algorithm through a transaction to the RNG contract in
a specified time period (e.g, 3 blocks period). The RNG contract
will check if s is valid by running Keccak-256 against s. Valid s
is kept to calculate the final random number.

2. After collecting all the secret numbers, the RNG contract calcu-
lates the random number from the function f(s) and the final
random number will be sent to BLOR and all the validators,

where s,,, and s,,,, are the minimum and maximum numbers
respectively:

Z?:l Si = Smin
f=—""—7 (2

max ~ Smin

4.3.2. Oracles reputation model

Let S} and F| stand for the success and failure rates of the kth oracle
after 7 trials, and let 01’(be the approximate payoff probability of oracle k
at trial 7. 6 has a Markovian dependency on 02’1 , so that with probabil-

ity v, 0} :kej(’l. Also with probability 1 -y, 6, is pulled from the prior
distribution Beta(a, b). To infer the new posterior distributions, BLOR
combines the sequentially generated prior reputations with incoming
observations (successes and failures on each oracle). The observation
@;{ is assumed to be Bernoulli(elfc).

In order to maximize the utility of the blockchain’s participants,
BLOR needs to select the oracles that perform their tasks correctly
at a lower price. Let ¢, be the normalized cost that oracle k charges
the blockchain with a weight of w to adjust the value of cost to the
chain participants. We denote R(¢}) as reputation state which is the
posterior distribution of ¢, given the observed sequence. At each trial,
the updated cost-based reputation state can be computed using Bayes’
rule as follows:

R(0) ~ PO | 0)P(O, | S5 Fi~Y) /we, ®)]

The prior probability of reward state is the sum of the posterior of the
last trial with a weigh of y, plus the generic prior R = f(s), as defined
below:

PO =015 " F)=yR®)+1-1R®) @
4.4. BLOR’s final decision based on knowledge gradient

In reinforcement learning methods, the entire reward is generally
received after the final measurement, which is impractical for our
problem in blockchain. Thus, we need to receive the reward given in
pieces over time. This will not only decrease the complexity of the
solution and computational resources, but also will shorten the results
time to identify the best oracles from the beginning of the process in
an online manner. The KG policy can achieve this by maximizing the
single period reward.

The objective given by Eq. (1), Eq. (3) has a terminal reward,
yT2(RT) := max 02. However, we require to restructure it in order
to provide single period reward V7-7(R') at trial ¢, and V17 (R"*!) —
VvT#(R') at times t + 1, ..., T, meaning that:

max ¢} =[VT*(RT) = VT (RN + -+ +

Expert Systems With Applications 214 (2023) 119160
[VT’”(Rt+1) _ VT,I((RT)] + VTJE(RI)

KG is defined as a single-step and look-ahead policy, which se-
lects the next instance with the largest expected reward, greedily. Its
algorithm is close to the optimal policy. It pretends only one more
exploration is allowed and assumes that after the next measurement,
all of the remaining options will exploit what is already known. It
calculates the anticipated change in each oracle’s estimated reward
rate, according to the current reputation state R}. The value function
of selecting oracle k, D' = k, on trial ¢ is:

V! =Elmax 0" | D' = k, R'] — max 0} 5)

The first term indicates the projected highest reward rate on the
following step if the kth oracle were elected, assuming all possible
outcomes of making that choice were taken into account. The second
term presents the expected greatest reward in the absence of extra
exploitative choices. Their difference is the “knowledge gradient” of
discovering an additional exploratory sample.

Let us imagine we have T trials of which (— 1) measurements were
already made. For the rth measurement, the KG decision rule is defined
as follows:

D' = arg max 6,’c +(T —1t—- l)Vk’ (6)

Other than very minimal computational resources that validators
require to compute KG, it accommodates the issue of cold start for
oracles who join the network later on. It means that the KG policy
measures those alternatives that has less knowledge about. The predic-
tive distributions of these alternative oracles (k') have large variance
(a},)* > (0})%, or equivalently, small precision B, < B

4.5. An illustrative example

In this section, we provide an illustrative example to show how
BLOR works in details. At first, BLOR shall construct BCRM. Assume
that we have 5 oracles, K = 5, Ol,...,05. For each one of them, we
shall calculate the reputation state. Fig. 4 illustrates how we form that
for each oracle. Consider O1 is measured for the first trial and returns
a success. In the beginning, we have no knowledge of its performance,
therefore its prior for the next step (S1) is equally distributed in the
Beta setting. Since computation of prior includes randomness, accord-
ing to Fig. 2, BLOR calls the node in charge of generating random
numbers to have the same random number for all the validators. The
summation of the prior with the random number is multiplied by the
Bernoulli trial to obtain the posterior. This posterior will be used as
the prior for the next step (S2). During the next trial (S3), O1 returns
a failure which negatively affects the posterior distribution.

After creating BCRM, BLOR seeks to find out the best oracles for the
task by computing and comparing their KG degrees. Table 1 presents
these calculations. Let us assume that the total number of trials is 500
and BLOR is exploring its 65th trial, (T = 500, = 65). We further
assume that at t = 64, O1 is selected and its number of successes became
20. BLOR must compute the expected reward rate, value function and
KG decision using Eq. (3), Eq. (5), and Eq. (6). Consider the two oracles
O1 and 04, which have the highest numbers of successes according to
Table 1, with a reputation state of 0.66 obtained from the previous trial.

1- Choosing O1:

(P=0.67)

01 wins R% =0.68/0.8 = 0.85

P=0.33
¢) R% =0.65/0.8 = 0.81

0Ol loses———
Therefore, we have:
V55 = (0.67 x 0.85 +0.33 % 0.81) — 0.66 = 0.16
D% = 0.85 + (436 = 0.16) = 70.61

M. Taghavi et al.

Success- Prior

S1 Success

Success

Random Beta
Failure (2,2)

AN VAN

Expert Systems With Applications 214 (2023) 119160

® Bernoulli m) Posterior

2
o S /\ / ﬂ

Success
S3 Success
Failure

AN N VAN

Fig. 4. Illustration of partial rewards state of O1 within the constructed BCRM.

Table 1

BLOR in the illustrative example (r = 65).
T =500 01 02 03 04 o5
Success 20 5 0 10 5
Failure 5 10 5 0 5
Cost 0.8 0.5 0.5 0.7 0.6
R(,) 0.85 0.82 0.7 0.97 0.83
v 0.16 0 0 0.95 0

1- Choosing O4:

(P=0.65)
04 wins———

(P=0.35)
04 loses——

R$ =0.68/0.7=0.97
R$ =0.66/0.7=0.94

Therefore, we have:

V8 = (0.65 % 0.97 +0.35 + 0.94) — 0.66 = 0.95

D% =0.97 + (436 * 0.95) = 415.17

Thus, among O1 and 04, O4 with the highest degree of KG will
be selected. BLOR chooses O4 rather than O1 based on its lower cost,
higher reputation and lower number of experience. Please note that to
save computation time, BLOR does not calculate value function and KG
for the oracles with very low chance of being selected.

The algorithm of BLOR will be explained in the next section in a case
study where we construct smart contracts and the relationship among
them.

4.6. Integration of BLOR in an Ethereum-based dapp

When it comes to the long-term success of utilizing oracles in
Dapps, efficient integration and reliable data flow are essential. In the
following steps, we explain an architectural perspective on how BLOR
can fit within a generic Ethereum-based Dapp.

1. Dapp would call BLOR to register its request for oracles on-chain.

2. In order for Ethereum Dapp users to interact with BLOR, a
minimum of one smart contract, such as a user contract (UC),
is necessary. UC holds a list of all oracles and their past history.
Each oracle announces its cost to perform the task c,.

3. UC implements BLOR to find qualified oracles to monitor the
SLA. UC runs the designed models and formulas through a set of
defined functions. BLOR selects at last three oracles and assigns
them tasks by registering events on-chain.

4. Selected oracles will be triggered to start the tasks off-chain. At
this stage, the proper money shall be deposited into UC.

5. Once the oracle’s job is done, it reports the outcome back to be
registered on the blockchain.

6. Once all oracles reported their results, BLOR would make a
decision on the outcome and rank the oracles based on the
consensus. The final outcome would be used to train the defined
models in BLOR.

7. BLOR passes the final result on-chain and it is accessible by

Dapp.

To develop secure and robust blockchain-based Dapps, the oracle
should support data availability and data integrity. BLOR can efficiently
achieve data availability by having multiple oracle servers preventing a
single point of failure problem. Moreover, using the past performance
and reputation system, BLOR tries to ensure that the external data is
safely received and is not tampered with before transferring to the
blockchain.

Updating the model of an already deployed smart contract is very
difficult as Ethereum smart contracts are, by design, immutable once
deployed. This could be a major challenge in integrating BLOR with
an existing smart contract model. The path to be approached for the
integration of BLOR is as follows. The deployed smart contract (contract
A) can be a pointer to another smart contract (contract B) that imple-
ments the actual functionality. If the functionality needs changing, A’s
reference to contract B gets updated to point to a replacement (contract
C that contains BLOR).

Depending on the platform in which BLOR is employed, the transac-
tion throughput could differ which leads to a scalability challenge. For
example, Ethereum supports roughly 30 transactions per second. Smart
contracts are usually designed in a minimalist manner to have less
computational cost. However, since BLOR is implementing a machine
learning approach, it costs more than the usual cost of smart contracts
to be executed.

5. A case study of cloudchain (cloud services trading over
blockchain)

The aim of the Cloudchain case study is to present how BLOR can
offer a unique smart model for employment of oracles and transform
the way cloud services are delivered. Cloudchain (Taghavi, Bentahar,
Otrok, & Bakhtiyari, 2018) is a blockchain-based platform designed
to allow cloud providers to interact, co-operate and compete through
outsourcing their pending or unmet computing demands.

With the help of smart contracts, Cloudchain is able to provide
higher transparency, visibility, and reliance in its decentralized ar-
rangements deployed over Ethereum. Cloudchain fails to enforce the
SLA’s requirements, which require accessing the outside world of the
blockchain network. There may be disagreements about SLA compli-
ance between cloud providers. However, the blockchain’s self-contained
execution environment makes it impossible to investigate the behavior
exhibited by the digital codes embedded in smart contracts. Oracle is

M. Taghavi et al.

thus tasked with performing the valuable verification task and will
confirm if the SLA is met. Many researchers assume oracle to be a
fully-trusted third-party application that has access to external data and
feeds it into the blockchain to be accessible by its applications (Taghavi,
Bentahar, Otrok, & Bakhtiyari, 2020). Furthermore, oracle is assumed
to be single or act as a member of a group, while in real world, each
oracle could be a selfish agent trying to maximize its own gain. We
explain how BLOR can contribute to this situation.

5.1. Background: Smart contracts of cloudchain

Three kinds of smart contracts are incorporated into Cloudchain that
include executable functions and state variables. Taghavi et al. (2018).

Cloudchain Registry (CCR), Contract 1, is a global contract mapping
Ethereum addresses (equivalent to public keys) to cloud providers iden-
tification values (including Name, Reputation Value, Computing Capacity
and Storage Capacity). A contract can include policies governing the
registration of new providers or changes to the mappings of existing
ones. Only certified cloud providers can register for the cloud provider
program. In addition, CCR maps identities to Cloudchain Contract
(CCC) addresses, where an exclusive contract concerning the profile of
each provider and the list of services is saved.

Cloudchain Profile (CCP), Contract 2, contains a list of references
to CCC, which depict all the participants’ past and present interactions
with each other. CCP uses a feature to generate provider notifications.
Ethereum enables the creation of events to indicate that certain actions
have been performed (e.g., a change to the data of profile). Providers
propagate and raise their requests to other nodes by transmitting them
to the CCP contract first. Transactions are tracked by status variables.
The status of a transaction indicates if it is new, waiting for an update,
or if it is completed. This contract is crucial because it stores addresses
of new CCC contracts, and without it Cloudchain could lose track of all
those contracts.

Cloudchain Contract (CCC), Contract 3, is generated among two
nodes when one agrees to provide the requested service to the other.
Similarly, the contract can be completed or canceled by its beneficia-
ries. The remaining balance will be transferred once the contract is
completed or canceled, and its status will also be updated. Cloudchain
members are able to join and depart from the system at any time. These
flexible memberships allow members to provide or demand services as
many times as required.

5.2. BLOR in cloudchain

Fig. 5 illustrates interactions among the contracts and cloud
providers. In step 1, The Cloud Provider as a requester (CP,) and the
Cloud Provider as a supplier (CP,) should register in CCR. Public key
pairs are assigned to each registered user in CCR.

In the case of a computational resource deficiency, CP, can create a
new CCC in step 2 by requesting a service using CCP. CCP ties identities
to the CCC’s address on the blockchain and keeps a history of providers
past and present engagements with other nodes as well as any SLA
violations.

CCC allows the interaction between two nodes in the network in
which one node responds to the other’s request in step 3. In order to
complete a contract, CP, has to pay a deposit in advance. Beneficiaries
can choose to end the contract or cancel it. Yet, CP, should confirm
termination of the contract and delivery of the requested service.
Once the contract is complete or canceled, CCC will calculate and
charge fines if any exist. The balance remaining on the contract will
be transferred to CP, or CP, accordingly. The contract status will be
updated as well.

In step 4, CP, can initiate quality monitoring at any time to verify
whether the provider meets the SLA conditions during the runtime.
To do so, the request shall be initiated through CCC in which a new
contract of CloudChain Oracle (CCO) will be created to perform the

Expert Systems With Applications 214 (2023) 119160

verification in step 5. CCO holds a list of all oracles with their past
history and their costs. CCO implements BLOR to find qualified oracle/s
to monitor the SLA. CCO runs the designed models to nominate one or
multiple oracles. Then the verification task is assigned and the proper
money is deposited into CCO in step 6. In the last step (6), the obtained
result is extracted to be push into CCC (step 7) and be used to train the
defined models in BLOR.

Function calls within contracts are transactions, and those that
change the contract storage have to be verified by blockchain valida-
tors. When a block containing the newly linked contract is mined, it
will be broadcast to all the nodes, and the first node who accepts the
request shall update the contract consequently.

All the explained procedure and interactions among smart contracts
are elaborated in Algorithm 1 and 2. Algorithm 1 illustrates the process
of requesting a service and triggering a quality monitoring request and
Algorithm 2 presents the process of selecting the best oracle/s by BLOR.
The complexity of Algorithm 2 increases linearly with the number » of
oracles, so it has a time complexity of O(n). Algorithm 1 depends on
the number of requests m, and it also grows linearly with the number
of oracles. Therefore, the computational complexity of Algorithm 1 is
O(n X m).

Algorithm 1 Cloud providers service agreements within Cloudchain

Input: Ether deposit; Cloud requester’s Ethereum address (CP,); Cloud
supplier’s Ethereum address (CP,); c,; CCO Ethereum address.

1: procedure SERVICEAGREEMENT

2 CP, makes a service request in CCP

3 CCP creates a CCC

4: CP,..SendTo(CCC, Ether deposit)

5: CCC.Availability = True

6: EventLog.Create("New request is available")

7 while CP. requests a quality verification do

8 CCC calls BLOR in Algorithm 2 > Outsource the task to oracle/s to
obtain the verification result

9: CCC.SendTo(CCO, ¢,)
the task

10: end while

11: if CCC.Completed then

> Pay the cost of the oracle ¢, to perform

12: EventLog.Create("CCC is completed")

13: ContractDeposit = CCC.TotalAmount

14: CCC.SendTo(C P, ContractDeposit)

15: EventLog.Create("Fund is transferred to the Cloud supplier")
16: end if

17: end procedure

6. Experimental results

Because there is no available dataset about blockchains’ oracles, in
order to evaluate the performance of BLOR, we simulated 100 oracles
operating within a blockchain in 1000 observations. We implemented
and experimented with BLOR using Python on Google Colab and the So-
lidity language on Ethereum, the code is publicly available on Github.®
Because a bandit is an online learner, it needs a record of the oracles
history prior to the current time step we are simulating in order for
it to act like in a production setting. Each oracle is assumed to have
a different historical performance drawn from a beta distribution. The
normalized cost of each oracle is assumed to be fixed and normally
distributed with a mean of 0.54 and standard deviation of 0.17. We
first discuss the challenges that we dealt with, and then provide the
obtained results.

3 https://github.com/kavehbc/Cloudchain

https://github.com/kavehbc/Cloudchain

M. Taghavi et al.

Expert Systems With Applications 214 (2023) 119160

CPr CP;
(1) Create CCR (2) Submit a new (4) Trigger a (3) Accept and update its
request (CCP), verification ccc
Deploy a new CCC request =]
and make a deposit T
v v \ A / g
| =]
CCR CCpP Ccc | H
&)

(7) Submit the verification results

Math Contract |[«—»

¥

A A
dh h

Oracle 1

C1

(5) Create a new contract (CCO)

Ccco
A4 A |3
(6) Assign the verification task to the
. selected oracle and obtain the results
v N
i
Oracle 2 Oracle k
C2 Ck

Fig. 5. Application of BLOR within Cloudchain.

Algorithm 2 BLOR process within CCO

Input: CCC Ethereum address; Oracles’ Ethereum address; c,; Ether deposit.
Output: Verification.Result > Boolean
1: procedure ORACLESELECTION

2: CCC.Deposit(CCO, Ether deposit)

3: Retrieve CCC’s terms and conditions to monitor the service

4: RNGContract.getRandom()

5: MathContract.calculate(R(9;{)) > refer to Egs. (3), (4)

6: BLOR calculates D' and selects the oracle with the highest D' > refer
to Egs. (5), (6)

7: if probability of success is low then

8: Select another two oracles with highest D

9: if EachVerification.Result = True for majority of oracles then

10: Verification.Result = True

11: else if EachVerification.Result = False for majority of oracles then

12: Verification.Result = False

13: end if

14: else

15: Test randomly against oracles with high reputations

16: end if

17: CCO.SendTo(selected oracle/s, ContractDeposit)

18: CCO.Update(Oracle/s reputation/s, Results)

19: CCO.ReportTo(CCC contract, Verification.Results)

20: Math contract receives the results and updates the posterior reputation
of the selected oracle/s in BCRM

21: end procedure

6.1. Smart contract development limitations

The current version of Cloudchain is using Ethereum and it is not
easy to run a machine learning algorithm on Ethereum that is a public
blockchain with various limitations. Besides, at the time of writing

10

this paper, Ethereum is still using POW consensus and has not been
upgraded to PoS yet. We came up with some solutions to test BLOR on
the current platform of Ethereum.

+ Random number: In blockchain, there is no pure random gen-
erator mechanism, because when the code is being run by other
nodes, they all should reach the same result to achieve a con-
sensus. There are some possible scenarios to generate a ran-
dom number such as using a centralized system using an oracle,
publicly verifiable secret sharing, or even hash-block. For the
purpose of our simulation, we used a simple, yet efficient solution,
which is using the block number to generate a hash number
to be employed as a random number. This solution is practical
and efficient since the block number is not known before being
generated.

The limited number of variables: Within Solidity EVM, there is
no hard limit on the number of variables, but there is a variable
limit of gas which is currently around 10 million gas. When there
is a read operation from a single point variable (not a list or
dictionary), it consumes 200 gas, and if there is a write operation,
it consumes 20,000 gas. Based on the code complexity, we should
limit the usage of variables since the gas limit can be exhausted
quickly and it can become very expensive. Machine learning,
artificial intelligence, and complex business logic algorithms can
easily end up with high gas if the code is not properly monitored.
Smart Contract Size: There is a limit of 24 KB for the Ethereum
smart contracts or they will be out of gas. Smart Contract codes
are very minimalistic in order to limit the gas required to make
sure it can run faster, cheaper, and possibly with fewer logical
bugs. This limitation can easily block the development of com-
plex logic such as machine learning and reinforcement learning
algorithms. In order to cope with this issue, we can make sure to
use as fewer read/write operations as possible; separate logic to

M. Taghavi et al.

Table 2

Probability of selection for the sample oracles.
Oracle ID 0 2 7 27 85 95
Cost 0.3 0.7 0.9 0.6 0.5 0.5
Success 4 5 9 6 3 1
Failure 5 0 1 3 4 3

read-only and write functions so that read-only functions can be
called via Web 3 for free or at a small cost; and possibly spread
the logic in multiple contracts if it is necessary.

Float number: Blockchain does not support any float/decimal
number with floating points. The reason is because all CPUs work
based on a binary mechanism, and there is no exact representa-
tion of fractions in binary mode, so they are round to the nearest
match. For this very important reason, blockchains do not support
any number with floating point. Even for financial transactions,
they have introduced smaller units such as wei, gwei, etc. instead
of using float numbers. Basically, the only supported numerical
data type in Ethereum is integer (either signed or unsigned).
So, we require to scale up all the variables in integer level. For
instance, if we want to take a number between 0 and 1, we have
to change the scale to 0 and 100 to replicate the behavior of 0——1
with one or two floating points precision. This would also impact
parts of the algorithm, since the mathematical behavior of 0 — —1
is different from 1——100. So, the formulas need slight adjustments
by scaling the values. For instance, if there are two float numbers,
we need to scale them by multiplying them by 100. Also, we need
to make sure that the scaling does not affect the outcome.
Advanced mathematical functions: Blockchain languages do
not support complex mathematical functions by default due to
various issues such as the ones discussed earlier. In the BLOR
algorithm, we used complex mathematical functions. Thus, in
order to run BLOR on blockchain, we built a new contract called
Math Contract. Math contract implements our required functions
using four primitive operations only. This contract supports Sin,
Cos, Log, exponential, Gamma function, square root (SQRT), Beta
Distribution etc. All these functions are developed in Solidity
solely based on integer numbers (with no floating point) and
primitive operations.

It is worthy to mention that all these limitations only affect the im-
plementation of the algorithms and had no impact on the evaluation
phase. The evaluations performed a simulation of the oracles and the
process of oracle selection to assess the performance of our developed
reinforcement learning model (BLOR), which is mainly based on our
computed formulas. During the implementation of those calculations
and formulas, we had these limitations, therefore we had to come
up with proper solutions to make it possible to be executed over the
blockchain.

6.2. Simulation results

In order to assess the effect of performance and cost in BLOR
decision making, we compared six oracles containing half faulty, during
first 100 observations. Table 2 represents their detailed histories and
costs. Fig. 6 presents the variation of value function for each oracle.
At the beginning, oracles with shorter history, such as Oracle 95
and Oracle 2, provide more value in the learning process of BLOR.
Consequently, they have a higher chance to be selected by BLOR, as can
be seen in Fig. 7. After few observations, more value is earned with the
oracles with cheaper price (such as Oracle 0 and Oracle 85). However,
the chance to be selected is more among the oracles with a balance
of price and performance (Oracle 27) and those that are very cheap
(Oracle 0). The value function of all the oracles tend to zero after a
while, when BLOR learned their behavior and there is no more value

11

Expert Systems With Applications 214 (2023) 119160

—— Oracle 0
05 1 Oracle 2
——— Oracle 7
0.4 1 —— Oracle 27
c - Oracle 85
2 —— Oracle 95
2 031
Z A A |
] l “ |
= 021 T
> | - /
AT
NN [
4 2l 1A VAL VT
0.1 1l 'l) ‘N\\
' ‘,/ A N | A\ -
\ A2\ ~A/ Y1y
0.0 1
T T T T
40 60 80 100
Observation
Fig. 6. Cost and history of the sample oracles.
Table 3

Algorithms comparison.

Performance Cost Time (mean; STD)
BLOR 90 52 (0.04; 0.005)
Monte Carlo 74 58 (10.3; 1.07)
Random 62 54 (0.008; 0.0003)
e-greedy 82 66 (0.03; 0.003)

in exploring them. Meanwhile, Oracle 85 generates an unsteady value,
which means BLOR is willing to measure the change into the future
expected reward of this oracle. This could be because of gaining more
successful history combined with its good price.

6.2.1. Benchmarking

Our multi-armed bandit-based solution for the oracle selection prob-
lem can vary based on how we perform exploration and exploitation.
We compare the performance of BLOR against other algorithms as
follows:

 No exploitation: this is the most naive approach where the system
selects randomly.

Exploitation with exploration at random: e-greedy is among the
most popular and efficient methods of this group. The e-greedy is
a heuristic model that assumes decision-making is determined by
a parameter ¢ to control the balance between random exploration
and exploitation. With probability of e, the oracle is chosen
randomly, and (1—¢) the oracle with the greatest estimated reward
rate will be selected.

» Exploration smartly with preference to uncertainty: BLOR is in

this category.

We further investigate the performance of Markov chain Monte Carlo
in our problem. Markov chain Monte Carlo is a probabilistic machine
learning method that creates samples from a continuous random vari-
able. The experiments are conducted using Python in Google Colab with
Intel(R) Xeon(R) CPU @ 2.00 GHz and 13 GB RAM. Table 3 presents
the average performance, cost and elapsed time of each algorithm with
mean and standard deviation (STD). Here, cost is the total money that
has to be paid to the selected oracles within all the observations. In gen-
eral, BLOR had the highest performance and Random the least. From
the economic perspective, BLOR was the most economical solution and
e-greedy was the costliest one. However, in terms of computation time,
Random runs very fast, followed by e-greedy with a comparable time
against BLOR. As expected, Monte Carlo lasted the longest.

Fig. 8 presents the performance of each method in noisy observa-
tions. By noise, we mean that the oracle did not behave as expected. It is
obvious that the performance of all the methods decline when the noise

M. Taghavi et al.

Expert Systems With Applications 214 (2023) 119160

07 — Oracle 0
Oracle 2
06 — Oracle 27
~—— Oracle 85
c Oracle 95
2 05 H Oracle 7
I |
2 \
(] \
had 04 |
s \
> |
Z » i
®
E- |
[|
a 0 { ~ £ ~
,.’,_'. X \
0 g AN\ A AN Al § i
L S AL\ A S o
00 — - -
0 0 0 & P 100

Observation

Fig. 7. Comparison of value function for the sample oracles.

[- BLOR [MonteCarlo [__JRandom [N E-greedy
v : - : :

Performance in percentage

No noise 20 40 60
Noisy observations in percentage

Fig. 8. Performance comparison against noisy observations.

increases, however, BLOR had the most steady accuracy. Even in a very
noisy situation, BLOR could maintain its performance by almost 80%.
After BLOR, even though e-greedy had higher accuracy, it was the most
influenced by the noise. Since this heuristic algorithm mostly picks the
oracle with the highest reward, it is unable to recognize its change of
behavior and is not suitable for noisy subjects. Consequently, ¢-greedy
picked the most expensive oracles in non-noisy or less noisy situations
and followed the same expense as the noise increased. As expected,
random selection did not show a significant change in its performance,
which was mostly around 50%. The moderate performance of Markov
chain Monte Carlo was mainly because of two reasons: (1) this method
requires several observations to build its model; and (2) Markov chain
Monte Carlo needs equal historical records of the oracles, while we
assumed that each oracle joined in different time and their age of
operation is not the same.

We further measured the total cost of the selected oracles by all
the considered methods as reported in Fig. 9. In a non-noisy or less
noisy environment, BLOR performed very well. However, as the noise
increases, BLOR sacrifices the cost to maintain the high performance.
In a very noisy situation (more than 50%), BLOR is the costliest
method. e-greedy picked the most expensive oracles in non-noisy or less
noisy situations and followed the same expense as the noise increased.
Random and then Markov Chain Monte Carlo were economical in all
the situations.

In order to investigate the effect of number of faulty oracles on
the performance of these methods, we run several experiments with

I 5L.oR I MonteCarlo []Random NN E-greedy
T T T T T

[

No noise 60
N0|sy observatlons in percentage

80

70

Cost in percentage

Fig. 9. Total cost comparison against noisy observations.

| -BLOR - MonteCarlo l:] Random -E—greedy
T T T T T

Ntk

40
Fig. 10. Performance comparison against the number of faulty oracles.

Performance in percentage
N w S () (2] ~
o Lo g o o o o

-y
o

o

Percentage of faulty oracles

different percentages of faulty oracles. A faulty oracle is an oracle with
a history of more than 50% failures. As Fig. 10 shows, performance or
accuracy of BLOR was the highest among these methods, followed by

12

M. Taghavi et al.

Expert Systems With Applications 214 (2023) 119160

Performance in percentage

I 5L OR
1 Average Runtime: 0.06 s

[ucB

Average Runtime: 0.34 s

[T THOMPSON
Average Runtime: 33.45 s

20 40

Noise in percentage

60

80

Fig. 11. Performance comparison against noisy observations along with the average run-time of each algorithm.
90 T —
' ' ' I BLOR
[ucs
80 f 1 | THOMPSON
70 1

Performance in percentage

1000 10000
Number of observations

Runtime of each algorithm

Observations|BLOR | UCB |[Thompson
1 100 0.05| 0.22 1.39
4 1000 0.04| 0.18 2251
10000 0.05| 3.51 375.69
| 100000 0.11]12.27| 3891.19

100000

Fig. 12. Performance comparison against number of observations along with the run-time of each algorithm (in sec.).

e-greedy. However, as the percentage of faulty oracles decreases, the
performance of all the methods increases.

6.2.2. Bandit algorithms under uncertainty

Random exploration is easy and fast, but not very efficient. It would
be preferred to use the policies that operate under high uncertainty and
choose those having high potential for being optimal in each round of
selection. Two widely known algorithms for uncertain environments
are UCB1 (referred as UCB throughout this paper) and Thompson
sampling.

The UCB algorithm has been proposed in Auer, Cesa-Bianchi, and
Fischer (2002) as a simple yet elegant solution of optimism in the face
of uncertainty. This algorithm keeps the number of times that each arm
has been selected in addition to their rewards. Each arm will be selected
once at initial rounds, and then the algorithm picks greedily the most
rewarding ones. The UCB method strictly prefers slightly higher UCB
valued treatment arms.

Thompson sampling, known as probability matching, was first pro-
posed in Thompson (1933) for two-armed bandit problems in clinical
trials. The main idea is to assume a simple prior distribution on the
parameters of the reward distribution of each arm, and at any time step,
play an arm according to its posterior probability of being the best arm.
Even though Thompson sampling is mathematically well defined, it is
computationally inefficient.

13

We compared BLOR’s performance against UCB and Thompson sam-
pling under two different conditions. The first condition was observing
the behavior of algorithms in 1000 observations when we increase
the noise, which is shown in Fig. 11. In the second condition that is
presented in Fig. 12, the noise was steady and set to be 50%, but
the number of observations were increased from 100 to 100000. In
all cases, runtime (in sec.) of each algorithm is presented since it
is the most important element to consider while being executed in
blockchain.

Overall, BLOR outperformed UCB in all cases and had a comparable
performance with Thompson sampling in our simulations. The UCB al-
gorithm explores the oracles based on the number of times each oracle
has been selected and explored before. The more each oracle is chosen,
the more confident it becomes about receiving the future rewards.
Since UCB assumes that the behavior probability of the oracles will be
maintained in the future as they become more confident, facing the
noise in the beginning has a more negative effect on the performance.
Since, in our scenario, it has been simulated for the oracles to change
their behavior, it becomes challenging for UCB to adapt very quickly.
A longer history of UCB observations could help in picking the winning
oracle.

Thompson sampling uses a sample over a probability distribution of
oracles trustworthiness, thus, it tends to adapt faster with any changes.
Moreover, this algorithm always considers the possibility of change of
behavior for the oracles, so it has a more stable performance. However,

M. Taghavi et al.

Thompson sampling is a much more computationally complex algo-
rithm, and it is not a suitable solution to be deployed over blockchain.
Not only it consumes very high computational resources, but it also can
cost a lot to be executed.

BLOR has adapted the concept of sampling over a probability
distribution similar to Thompson sampling, so that it could outper-
form UCB and follow closely the performance of Thompson sampling.
Even though Thompson sampling could beat BLOR in very high tri-
als (e.g. 100,000 trials), BLOR is extremely less complex and faster,
which makes it overall a suitable solution to be used and executed on
blockchain.

7. Conclusion

Oracles gather information from the real world and transport it onto
the blockchain for further use. Hence, the use of oracles is imperative to
promote a widespread adoption of smart contracts. Yet, research about
oracles and their practical application is very immature. This paper
tried to shed some light by addressing two major challenges in this
area. The first challenge is about employing a smart mechanism in place
to identify the trustless and cost-efficient oracles. This challenge was
addressed by developing a Bayesian cost-dependent reputation model
in a multi-armed bandit setting, named BLOR. The second challenge of
actual application of a smart mechanism using reinforcement learning
was dealt with by implementing BLOR on Ethereum. To the best
of our knowledge, this paper is the first to implement a machine
learning algorithm for smart contracts in general, and for oracles’
recruitment in particular. We showed how to solve various challenges
that could raise while implementing complex algorithms like machine
learning in Ethereum. To prove the efficiency of BLOR, we simulated
100 oracles operating within a blockchain in 1000 observations and
benchmarked it against several algorithms that vary by their degree
of exploration and exploitation. It was found that BLOR prioritizes the
newer oracles which hold less history and those with a fair balance
of performance and price. Through experiments using various bench-
marks, BLOR proved a steady performance in a low to high noisy
environment ranging from 80 to 90 percent, whereas other algorithms
performance was ranged from 80 to 50 percent. BLOR had the most cost
saving selection when the noise was lower. Overall, BLOR performed
competitively better than the other algorithms. As future work, we plan
to integrate advanced trust concepts such as group trust, distributed
trust and propagated trust (Bentahar, Drawel, & Sadiki, 2022; Drawel,
Bentahar, Laarej, & Rjoub, 2020, 2022; Drawel, Qu, Bentahar, & Shak-
shuki, 2020) into our oracle recruitment mechanism and investigate
the potential of federated learning for a federated selection mechanism
of oracles (Rjoub, Wahab, Bentahar & Bataineh, 2022; Wahab, Rjoub,
Bentahar, & Cohen, 2022).

CRediT authorship contribution statement

Mona Taghavi: Conceptualization, Formal analysis, Investigation,
Methodology, Software, Writing — original draft. Jamal Bentahar:
Conceptualization, Formal analysis, Investigation, Methodology, Vali-
dation, Funding acquisition, Writing — review & editing. Hadi Otrok:
Conceptualization, Investigation, Methodology, Validation, Writing —
review & editing. Kaveh Bakhtiyari: Conceptualization, Investigation,
Formal analysis, Software, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

14

Expert Systems With Applications 214 (2023) 119160

Acknowledgments

M. Taghavi was supported by NSERC Vanier, and J. Bentahar is
supported by NSERC, FRQNT, and MITACS.

References

Alagha, A., Singh, S., Mizouni, R., Bentahar, J., & Otrok, H. (2022). Target localization
using multi-agent deep reinforcement learning with proximal policy optimization.
Future Gener. Comput. Syst., 136, 342-357.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2), 235-256.

Baygin, M., Yaman, O., Baygin, N., & Karakose, M. (2022). A blockchain-based approach
to smart cargo transportation using UHF RFID. Expert Systems with Applications, 188,
Article 116030. http://dx.doi.org/10.1016/j.eswa.2021.116030.

Bentahar, J., Drawel, N., & Sadiki, A. (2022). Quantitative group trust: A two-stage
verification approach. In P. Faliszewski, V. Mascardi, C. Pelachaud, & M. E. Taylor
(Eds.), 21st international conference on autonomous agents and multiagent systems (pp.
100-108). International Foundation for Autonomous Agents and Multiagent Systems
(IFAAMAS).

Berryhill, R., & Veneris, A. (2019). ASTRAEA: A decentralized blockchain oracle. IEEE
Blockchain Technical Briefs.

Bhatia, G. K., Gupta, S., Dubey, A., & Kumaraguru, P. (2020). WorkerRep: Immutable
reputation system for crowdsourcing platform based on blockchain. arXiv preprint
arXiv:2006.14782.

Bouraga, S. (2021). A taxonomy of blockchain consensus protocols: A survey and
classification framework. Expert Systems with Applications, 168, Article 114384.
Buterin, V., & Griffith, V. (2017). Casper the friendly finality gadget. CoRR

abs/1710.09437, arXiv:1710.09437.

Chatzopoulos, D., Ahmadi, M., Kosta, S., & Hui, P. (2017). Flopcoin: A cryptocur-
rency for computation offloading. IEEE Transactions on Mobile Computing, 17(5),
1062-1075.

Chatzopoulos, D., Gujar, S., Faltings, B., & Hui, P. (2018). Privacy preserving and cost
optimal mobile crowdsensing using smart contracts on blockchain. In 2018 IEEE
15th international conference on mobile Ad Hoc and sensor systems (pp. 442-450).
IEEE.

Ding, Y., Chen, Z., Lin, F., & Tang, C. (2019). Blockchain-based credit and arbitration
mechanisms in crowdsourcing. In 2019 3rd international symposium on autonomous
systems (pp. 490-495). IEEE.

Drawel, N., Bentahar, J., Laarej, A., & Rjoub, G. (2020). Formalizing group and
propagated trust in multi-agent systems. In C. Bessiere (Ed.), Proceedings of
the twenty-ninth international joint conference on artificial intelligence (pp. 60-66).
ijcai.org.

Drawel, N., Bentahar, J., Laarej, A., & Rjoub, G. (2022). Formal verification of group
and propagated trust in multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 36(1), 19.

Drawel, N., Qu, H., Bentahar, J., & Shakshuki, E. M. (2020). Specification and automatic
verification of trust-based multi-agent systems. Future Generation Computer Systems,
107, 1047-1060.

Ellis, S., Juels, A., & Nazarov, S. (2017). Chainlink a decentralized oracle network.
White paper, 11.

Frazier, P., Powell, W., & Dayanik, S. (2009). The knowledge-gradient policy for
correlated normal beliefs. INFORMS journal on Computing.

Gao, S., Chen, X., Zhu, J., Dong, X., & Ma, J. (2021). TrustWorker: A trustworthy
and privacy-preserving worker selection scheme for blockchain-based crowdsensing.
IEEE Transactions on Services Computing.

Goel, N., van Schreven, C., Filos-Ratsikas, A., & Faltings, B. (2020). Infochain: A
decentralized, trustless and transparent oracle on blockchain. In C. Bessiere (Ed.),
Proceedings of the twenty-ninth international joint conference on artificial intelligence
(pp. 4604-4610).

Ho, G., Tang, Y. M., Tsang, K. Y., Tang, V., & Chau, K. Y. (2021). A blockchain-
based system to enhance aircraft parts traceability and trackability for inventory
management. Expert Systems with Applications, 179, Article 115101. http://dx.doi.
org/10.1016/j.eswa.2021.115101.

Hull, R., Batra, V. S., Chen, Y.-M., Deutsch, A., Heath III, F. F. T., & Vianu, V. (2016).
Towards a shared ledger business collaboration language based on data-aware
processes. In ICSOC (pp. 18-36).

Jain, S., Narayanaswamy, B., & Narahari, Y. (2014). A multiarmed bandit incentive
mechanism for crowdsourcing demand response in smart grids. In C. E. Brodley,
& P. Stone (Eds.), Proceedings of the twenty-eighth AAAI conference on artificial
intelligence (pp. 721-727). AAAI Press.

Jiao, Y., Wang, P., Niyato, D., & Xiong, Z. (2017). Social welfare maximization
auction in edge computing resource allocation for mobile blockchain. arXiv preprint
arXiv:1710.10595.

Kadadha, M., Otrok, H., Mizouni, R., Singh, S., & Ouali, A. (2020). SenseChain: A
blockchain-based crowdsensing framework for multiple requesters and multiple
workers. Future Generation Computer Systems, 105, 650-664.

http://refhub.elsevier.com/S0957-4174(22)02178-9/sb1
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb1
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb1
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb1
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb1
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb2
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb2
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb2
http://dx.doi.org/10.1016/j.eswa.2021.116030
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb4
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb5
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb5
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb5
http://arxiv.org/abs/2006.14782
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb7
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb7
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb7
http://arxiv.org/abs/1710.09437
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb9
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb9
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb9
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb9
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb9
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb10
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb10
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb10
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb10
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb10
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb10
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb10
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb11
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb11
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb11
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb11
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb11
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb12
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb12
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb12
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb12
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb12
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb12
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb12
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb13
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb13
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb13
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb13
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb13
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb14
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb14
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb14
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb14
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb14
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb15
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb15
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb15
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb16
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb16
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb16
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb17
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb17
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb17
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb17
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb17
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb18
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb18
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb18
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb18
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb18
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb18
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb18
http://dx.doi.org/10.1016/j.eswa.2021.115101
http://dx.doi.org/10.1016/j.eswa.2021.115101
http://dx.doi.org/10.1016/j.eswa.2021.115101
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb20
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb20
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb20
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb20
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb20
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb21
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb21
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb21
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb21
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb21
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb21
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb21
http://arxiv.org/abs/1710.10595
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb23
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb23
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb23
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb23
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb23

M. Taghavi et al.

Khosravifar, B., Bentahar, J., Moazin, A., & Thiran, P. (2010). Analyzing communities
of web services using incentives. International Journal of Web Services Research, 7(3),
30-51.

Kochovski, P., Gec, S., Stankovski, V., Bajec, M., & Drobintsev, P. D. (2019). Trust
management in a blockchain based fog computing platform with trustless smart
oracles. Future Generation Computer Systems, 101, 747-759.

Li, H. (2010). Customer reviews in spectrum: Recommendation system in cognitive
radio networks. In 2010 IEEE symposium on new frontiers in dynamic spectrum (pp.
1-9).

Liu, X., Zhu, T., Jiang, C., Ye, D., & Zhao, F. (2022). Prioritized experience replay
based on multi-armed bandit. Expert Systems with Applications, 189, Article 116023.
http://dx.doi.org/10.1016/j.eswa.2021.116023.

Lo, S. K., Xu, X., Staples, M., & Yao, L. (2020). Reliability analysis for blockchain
oracles. Computers and Electrical Engineering, 83, Article 106582.

Lu, Q., Xu, X., Liu, Y., Weber, I, Zhu, L., & Zhang, W. (2019). uBaaS: A unified
blockchain as a service platform. Future Generation Computer Systems, 101, 564-575.

Ma, L., Kaneko, K., Sharma, S., & Sakurai, K. (2019). Reliable decentralized oracle with
mechanisms for verification and disputation. In 2019 seventh international symposium
on computing and networking workshops (pp. 346-352).

Mendling, J., Weber, 1., Aalst, W. V. D., Brocke, J. V., Cabanillas, C., Daniel, F., et al.
(2018). Blockchains for business process management-challenges and opportunities.
ACM Transactions on Management Information Systems, 9(1), 4.

Morabito, V. (2017). Business innovation through blockchain.
International Publishing.

Miinsing, E., Mather, J., & Moura, S. (2017). Blockchains for decentralized optimization
of energy resources in microgrid networks. In CCTA (pp. 2164-2171).

Rjoub, G., Bentahar, J., Wahab, O. A., & Bataineh, A. S. (2021). Deep and reinforcement
learning for automated task scheduling in large-scale cloud computing systems.
Concurrency and Computation: Practice and Experience, 33(23).

Rjoub, G., Wahab, O. A., Bentahar, J., & Bataineh, A. (2022). Trust-driven reinforcement
selection strategy for federated learning on IoT devices. Computing, http://dx.doi.
org/10.1007/s00607-022-01078-1.

Rjoub, G., Wahab, O. A., Bentahar, J., Cohen, R., & Bataineh, A. (2022). Trust-
augmented deep reinforcement learning for federated learning client selection.
Information Systems Frontiers, in press. http://dx.doi.org/10.1007/s10796-022-
10307-z.

Sami, H., Bentahar, J., Mourad, A., Otrok, H., & Damiani, E. (2022). Graph convolu-
tional recurrent networks for reward shaping in reinforcement learning. Inf. Sci.,
608, 63-80.

Sami, H., Mourad, A., Otrok, H., & Bentahar, J. (2021). Demand-driven deep reinforce-
ment learning for scalable fog and service placement. IEEE Transactions on Services
Computing, http://dx.doi.org/10.1109/TSC.2021.3075988.

Cham: Springer

15

Expert Systems With Applications 214 (2023) 119160

Sami, H., Otrok, H., Bentahar, J., & Mourad, A. (2021). Al-based resource provisioning
of IoE services in 6G: A deep reinforcement learning approach. IEEE Transactions
on Network and Service Management, 18(3), 3527-3540.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction. MIT Press.

Taghavi, M., Bentahar, J., Otrok, H., & Bakhtiyari, K. (2018). Cloudchain: A blockchain-
based coopetition differential game model for cloud computing. In ICSOC (pp.
146-161). Springer.

Taghavi, M., Bentahar, J., Otrok, H., & Bakhtiyari, K. (2020). A blockchain-based model
for cloud service quality monitoring. IEEE Transactions on Services Computing, 13(2),
276-288.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3/4), 285-294.
Underwood, S. (2016). Blockchain beyond bitcoin. Communications of the ACM, 59(11),

15-17.

Villar, S. S., Bowden, J., & Wason, J. (2015). Multi-armed bandit models for the optimal
design of clinical trials: benefits and challenges. Statistical Science: A Review Journal
of the Institute of Mathematical Statistics, 30(2), 199.

Wahab, O. A., Rjoub, G., Bentahar, J., & Cohen, R. (2022). Federated against the cold:
A trust-based federated learning approach to counter the cold start problem in
recommendation systems. Information Sciences, 601, 189-206.

Xiao, L., Ding, Y., Jiang, D., Huang, J., Wang, D., Li, J., et al. (2020). A reinforce-
ment learning and blockchain-based trust mechanism for edge networks. IEEE
Transactions on Communications, 68(9), 5460-5470.

Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., et al. (2016).
The blockchain as a software connector. In 2016 13th working IEEE/IFIP conference
on software architecture (pp. 182-191). IEEE.

Xu, J., Wang, S., Bhargava, B. K., & Yang, F. (2019). A blockchain-enabled trustless
crowd-intelligence ecosystem on mobile edge computing. IEEE Transactions on
Industrial Informatics, 15(6), 3538-3547.

Xu, C., Wang, K., & Guo, M. (2017). Intelligent resource management in blockchain-
based cloud datacenters. IEEE Cloud Computing, 4(6), 50-59. http://dx.doi.org/10.
1109/MCC.2018.1081060.

Yermack, D. (2017). Corporate governance and blockchains. Review of Finance, 21(1),
7-31.

Zhang, F., Cecchetti, E., Croman, K., Juels, A., & Shi, E. (2016). Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security (pp. 270-282).

Zhang, Y., & Wen, J. (2017). The IoT electric business model: Using blockchain
technology for the internet of things. Peer-To-Peer Networking and Applications,
10(4), 983-994.

Zhao, K., Tang, S., Zhao, B., & Wu, Y. (2019). Dynamic and privacy-preserving
reputation management for blockchain-based mobile crowdsensing. IEEE Access, 7,
74694-74710.

http://refhub.elsevier.com/S0957-4174(22)02178-9/sb24
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb24
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb24
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb24
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb24
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb25
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb25
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb25
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb25
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb25
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb26
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb26
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb26
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb26
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb26
http://dx.doi.org/10.1016/j.eswa.2021.116023
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb28
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb28
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb28
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb29
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb29
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb29
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb30
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb30
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb30
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb30
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb30
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb31
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb31
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb31
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb31
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb31
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb32
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb32
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb32
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb33
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb33
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb33
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb34
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb34
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb34
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb34
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb34
http://dx.doi.org/10.1007/s00607-022-01078-1
http://dx.doi.org/10.1007/s00607-022-01078-1
http://dx.doi.org/10.1007/s00607-022-01078-1
http://dx.doi.org/10.1007/s10796-022-10307-z
http://dx.doi.org/10.1007/s10796-022-10307-z
http://dx.doi.org/10.1007/s10796-022-10307-z
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb37
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb37
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb37
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb37
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb37
http://dx.doi.org/10.1109/TSC.2021.3075988
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb39
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb39
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb39
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb39
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb39
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb40
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb41
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb41
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb41
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb41
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb41
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb42
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb42
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb42
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb42
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb42
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb43
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb43
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb43
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb44
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb44
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb44
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb45
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb45
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb45
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb45
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb45
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb46
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb46
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb46
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb46
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb46
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb47
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb47
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb47
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb47
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb47
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb48
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb48
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb48
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb48
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb48
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb49
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb49
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb49
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb49
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb49
http://dx.doi.org/10.1109/MCC.2018.1081060
http://dx.doi.org/10.1109/MCC.2018.1081060
http://dx.doi.org/10.1109/MCC.2018.1081060
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb51
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb51
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb51
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb52
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb52
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb52
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb52
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb52
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb53
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb53
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb53
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb53
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb53
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb54
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb54
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb54
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb54
http://refhub.elsevier.com/S0957-4174(22)02178-9/sb54

	A reinforcement learning model for the reliability of blockchain oracles
	Introduction
	Motivational Scenario: Trust Paradox of Oracles and Blockchains
	Background and Related Work
	Background on Blockchain
	Background on Multi-Armed Bandit
	Related Work: Blockchain Oracles
	Related Work: Worker Selection in a Blockchain-based Crowdsensing

	BLOR: A Markovian Multi-Armed Bandit-based Solution
	BLOR Framework
	Formulating Oracles Problem in a Bandit Setting
	Bayesian Cost-dependent Reputation Model
	Random Number Generator
	Oracles Reputation Model

	BLOR's Final Decision based on Knowledge Gradient
	An Illustrative Example
	Integration of BLOR in an Ethereum-based Dapp

	A Case Study of Cloudchain (Cloud Services Trading over Blockchain)
	Background: Smart Contracts of Cloudchain
	BLOR in Cloudchain

	Experimental Results
	Smart Contract Development Limitations
	Simulation Results
	Benchmarking
	Bandit Algorithms under Uncertainty

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

